首页> 外文OA文献 >Impacts of droughts and extreme temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones
【2h】

Impacts of droughts and extreme temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones

机译:干旱和极端温度事件对初级生产总量和生态系统呼吸的影响:跨生态系统和气候区的系统评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Extreme climatic events, such as droughts and heat stress induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30 year time period. We then used FLUXNET eddy-covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they down-regulated GPP, resulting in a moderate reduction of the ecosystem’s carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco, and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a down-regulation after about two weeks. This confirms earlier theories that not only the magnitude but also the duration of an extreme event determines its impact. Our study corroborates the results of several local site-level case studies, but as a novelty generalizes these findings at the global scale. Specifically, we find that the different response functions of the two antipodal land-atmosphere fluxes GPP and Reco can also result in increasing NEP during certain extreme conditions. Apparently counterintuitive findings of this kind bear great potential for scrutinizing the mechanisms implemented in state-of-the-art terrestrial biosphere models and provide a benchmark for future model development and testing.
机译:极端气候事件(例如干旱和热应激)导致生态系统-大气CO2通量异常,例如初级生产总值(GPP)和生态系统呼吸(Reco),因此可以改变生态系统净碳平衡。然而,尽管我们对基本机制有了越来越多的了解,但生态系统内部和生态系统之间不同类型的极端事件对GPP和Reco的影响程度仍然难以预测。在这里,我们旨在确定控制极端事件对GPP,Reco以及由此产生的净生态系统产量(NEP)的幅度的主要因素。我们专注于高温和干旱及其结合的影响。在30年的时间里,我们在不断缩小规模的水供应和温度测量中确定了水文气象极端事件。然后,我们使用FLUXNET涡流-协方差通量测量来估算主要植被类型和气候带这些极端事件期间的CO2通量异常。总体而言,我们的结果表明,短期极端热量比下调GPP更加强烈地增强了呼吸作用,从而适度降低了生态系统的碳汇潜力。在没有热应激的情况下,干旱倾向于对GPP和Reco产生较小且类似的抑制作用,因此经常导致中性NEP响应。干旱和高温的结合通常会导致GPP的大幅下降,而高温和干旱对呼吸的影响部分相互抵消。综合起来,与任何单因素极端情况相比,复合的高温和干旱事件导致最强的碳汇降低。但是,本文的主要见解是持续时间最重要:对于干旱期间的热应激,影响的大小会随着持续时间而系统地增加,而在没有干旱的热应激下,Reco随时间的响应从最初的增加变为最初的增加。大约两周后下调。这证实了较早的理论,即极端事件的大小和持续时间都决定其影响。我们的研究证实了一些本地站点级案例研究的结果,但是作为新颖性,这些发现在全球范围内得到了概括。具体而言,我们发现两种对映的陆地大气通量GPP和Reco的不同响应函数也可能导致在某些极端条件下的NEP增加。显然,这种与直觉相反的发现对于审查最新的陆地生物圈模型中实施的机制具有巨大的潜力,并为将来的模型开发和测试提供了基准。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号